首页  办公服务  科学研究  最新通知

PRL | 电压控制Bimeron力矩驱动面内磁矩写入新方法

发布时间:2024-11-18     来源:物理学系综合网     编辑:     浏览次数:201

浙江大学量子物态与器件研究中心、浙江大学物理学院杨洪新教授、常凯院士与兰州大学于东星研究员、贾成龙教授,以及南京大学和中国科学院宁波材料技术与工程研究所科研人员合作在物理学顶级期刊《Physical Review Letters》上发表了题为“Voltage-Controlled Bimeron Torques Switching of In-plane Magnetization”的研究论文[Phys. Rev. Lett. 133, 206701 (2024)]。该工作提出了通过利用双半子(Bimeron:一种拓扑磁结构)力矩转移自旋角动量,实现电压控制的面内磁矩翻转的全新磁写入方法。于东星博士和尕永龙博士生为论文共同第一作者,浙江大学物理学院杨洪新教授、常凯院士以及兰州大学物理学院贾成龙教授为该论文的通讯作者,浙江大学为该论文第一署名单位。


 

1. Bimeron力矩磁随机存储器(bimeron-torques MRAM)示意图。

磁矩的写入,即磁矩的翻转操作,是自旋电子学的最核心研究内容之一。当前主流的磁写入机制主要是电流驱动的自旋转移力矩(spin-transfer torqueSTT)和自旋轨道力矩(spin-orbit torqueSOT),因预言STT并催生了电流控制纳米磁结构领域(For predicting spin-transfer torque and opening the field of current-induced control over magnetic nanostructures.),John Slonczewski Luc Berger获得了2013APS Buckley奖。

然而,随着信息存储对高比特存储密度、高速读写以及低功耗的要求,发展更小尺寸的磁介质以及更低功耗的磁写入方式成为了自旋电子学的核心竞争领域。浙江大学量子物态与器件研究中心、浙江大学物理学院研究人员在前期工作基础:

1) 建立实空间和倒空间自旋螺旋态计算反对称交换耦合的第一性原理计算方法。(反对称交换耦合,其本源来自自旋轨道耦合,即相对论效应,又称为Dzyaloshinskii-Moriya相互作用(DMI),是和对称性交换耦合即海森堡交换耦合相对应的一种磁相互作用)[Phys. Rev. Lett. 115, 267210 (2015),引用754次;Nat. Rev. Phys. 5, 43 (2023)ESI热点论文]

2提出DMI力矩翻转垂直磁矩的磁写入新方法。[Phys. Rev. Lett. 130, 056701 (2023)ESI高被引论文]

近日,又创新性的提出一种新的磁写入方式:电压控制双半子(Bimeron)力矩驱动面内磁矩翻转。[Phys. Rev. Lett. 133, 206701 (2024)]

Bimeron是和磁斯格明子相对应的一种拓扑磁结构,该团队提出利用电压控制的DMI可以实现对其手性控制,而Bimeron在其手性转换过程中能够将自旋角动量传递给周围磁矩,进而改变磁体的磁化方向(见图1),实现面内磁化方向的180度可控翻转操作(见图2)

2. (a)用于产生Bimeron力矩的交变脉冲电压;(b)Bimeron力矩驱动的平均面内磁化 <mx> 的正向切换(0-2.7 ns)和反向切换(2.7-5.4 ns)(c)对应于(b)中面内磁化切换的Bimeron动力学。长实箭头表示铁磁背景方向。

Bimeron力矩驱动面内磁翻转方法扩展了自旋角动量载体的范围,巧妙的利用纳米级拓扑磁结构的净磁矩实现了不需要移动电子参与即可转移并传递自旋角动量,从机理上避免了电子运动和碰撞引发的焦耳热问题,为低功耗磁随机存储器(MRAM)的写入操作提供了一种全新的高效可选方案。

该项研究得到了国家重点研发计划,国家自然科学基金,浙江省尖兵计划项目等的资助。

论文链接:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.206701

https://www.nature.com/articles/s42254-022-00529-0

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.267210

        https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.056701