Editor: 周婷 Time: 2021-05-10 Number of visits: 68
The 4f-electron delocalization plays a key role in the low-temperature properties of rare-earth metals and intermetallics, and it is normally realized by the Kondo coupling between 4f and conduction electrons. Due to the large Coulomb repulsion of 4f electrons, the bandwidth-control Mott-type delocalization, commonly observed in d-electron systems, is difficult in 4f-electron systems and remains elusive in spectroscopic experiments. Here we demonstrate that the bandwidth-control orbital-selective delocalization of 4f electrons can be realized in epitaxial Ce films by thermal annealing, which results in a metastable surface phase with reduced layer spacing. The quasiparticle bands exhibit large dispersion with exclusive 4f character near and extend reasonably far below the Fermi energy, which can be explained from the Mott physics. The experimental quasiparticle dispersion agrees well with density-functional theory calculation and also exhibits unusual temperature dependence, which could arise from the delicate interplay between the bandwidth-control Mott physics and the coexisting Kondo hybridization. Our work opens up the opportunity to study the interaction between two well-known localization-delocalization mechanisms in correlation physics, i.e., Kondo vs Mott, which can be important for a fundamental understanding of 4f-electron systems.
Nature Communications 12, 2520 (2021)
The published article is available at https://www.nature.com/articles/s41467-021-22710-2
Add: No. 8 Hainayuan Building, Zijingang Campus, Zhejiang University, 866 Yuhangtang Rd, Hangzhou, 310027, P.R. China
Tel: +86-571-87953325
Fax: +86-571-87951895
Email: yongyi@zju.edu.cn